\(\int \frac {x^7}{(a x+b x^3+c x^5)^2} \, dx\) [93]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [B] (verification not implemented)
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 20, antiderivative size = 78 \[ \int \frac {x^7}{\left (a x+b x^3+c x^5\right )^2} \, dx=\frac {x^2 \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {2 a \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}} \]

[Out]

1/2*x^2*(b*x^2+2*a)/(-4*a*c+b^2)/(c*x^4+b*x^2+a)+2*a*arctanh((2*c*x^2+b)/(-4*a*c+b^2)^(1/2))/(-4*a*c+b^2)^(3/2
)

Rubi [A] (verified)

Time = 0.05 (sec) , antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {1599, 1128, 736, 632, 212} \[ \int \frac {x^7}{\left (a x+b x^3+c x^5\right )^2} \, dx=\frac {2 a \text {arctanh}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}}+\frac {x^2 \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )} \]

[In]

Int[x^7/(a*x + b*x^3 + c*x^5)^2,x]

[Out]

(x^2*(2*a + b*x^2))/(2*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)) + (2*a*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(b^
2 - 4*a*c)^(3/2)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 632

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 736

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m - 1)*(d
*b - 2*a*e + (2*c*d - b*e)*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c))), x] - Dist[2*(2*p + 3)*((c*d
^2 - b*d*e + a*e^2)/((p + 1)*(b^2 - 4*a*c))), Int[(d + e*x)^(m - 2)*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ
[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m +
 2*p + 2, 0] && LtQ[p, -1]

Rule 1128

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m - 1)/2)*(a +
 b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]

Rule 1599

Int[(u_.)*(x_)^(m_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(n_.), x_Symbol] :> Int[u*x^(m +
 n*p)*(a + b*x^(q - p) + c*x^(r - p))^n, x] /; FreeQ[{a, b, c, m, p, q, r}, x] && IntegerQ[n] && PosQ[q - p] &
& PosQ[r - p]

Rubi steps \begin{align*} \text {integral}& = \int \frac {x^5}{\left (a+b x^2+c x^4\right )^2} \, dx \\ & = \frac {1}{2} \text {Subst}\left (\int \frac {x^2}{\left (a+b x+c x^2\right )^2} \, dx,x,x^2\right ) \\ & = \frac {x^2 \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {a \text {Subst}\left (\int \frac {1}{a+b x+c x^2} \, dx,x,x^2\right )}{b^2-4 a c} \\ & = \frac {x^2 \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {(2 a) \text {Subst}\left (\int \frac {1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )}{b^2-4 a c} \\ & = \frac {x^2 \left (2 a+b x^2\right )}{2 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {2 a \tanh ^{-1}\left (\frac {b+2 c x^2}{\sqrt {b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.19 \[ \int \frac {x^7}{\left (a x+b x^3+c x^5\right )^2} \, dx=\frac {b^2 x^2+a \left (b-2 c x^2\right )}{2 c \left (-b^2+4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {2 a \arctan \left (\frac {b+2 c x^2}{\sqrt {-b^2+4 a c}}\right )}{\left (-b^2+4 a c\right )^{3/2}} \]

[In]

Integrate[x^7/(a*x + b*x^3 + c*x^5)^2,x]

[Out]

(b^2*x^2 + a*(b - 2*c*x^2))/(2*c*(-b^2 + 4*a*c)*(a + b*x^2 + c*x^4)) + (2*a*ArcTan[(b + 2*c*x^2)/Sqrt[-b^2 + 4
*a*c]])/(-b^2 + 4*a*c)^(3/2)

Maple [A] (verified)

Time = 0.08 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.33

method result size
default \(\frac {-\frac {\left (2 a c -b^{2}\right ) x^{2}}{c \left (4 a c -b^{2}\right )}+\frac {a b}{c \left (4 a c -b^{2}\right )}}{2 c \,x^{4}+2 b \,x^{2}+2 a}+\frac {2 a \arctan \left (\frac {2 c \,x^{2}+b}{\sqrt {4 a c -b^{2}}}\right )}{\left (4 a c -b^{2}\right )^{\frac {3}{2}}}\) \(104\)
risch \(\frac {-\frac {\left (2 a c -b^{2}\right ) x^{2}}{2 c \left (4 a c -b^{2}\right )}+\frac {a b}{2 c \left (4 a c -b^{2}\right )}}{c \,x^{4}+b \,x^{2}+a}+\frac {a \ln \left (\left (\left (-4 a c +b^{2}\right )^{\frac {3}{2}}+4 a b c -b^{3}\right ) x^{2}+8 c \,a^{2}-2 b^{2} a \right )}{\left (-4 a c +b^{2}\right )^{\frac {3}{2}}}-\frac {a \ln \left (\left (\left (-4 a c +b^{2}\right )^{\frac {3}{2}}-4 a b c +b^{3}\right ) x^{2}-8 c \,a^{2}+2 b^{2} a \right )}{\left (-4 a c +b^{2}\right )^{\frac {3}{2}}}\) \(168\)

[In]

int(x^7/(c*x^5+b*x^3+a*x)^2,x,method=_RETURNVERBOSE)

[Out]

1/2*(-(2*a*c-b^2)/c/(4*a*c-b^2)*x^2+a*b/c/(4*a*c-b^2))/(c*x^4+b*x^2+a)+2*a/(4*a*c-b^2)^(3/2)*arctan((2*c*x^2+b
)/(4*a*c-b^2)^(1/2))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 191 vs. \(2 (72) = 144\).

Time = 0.30 (sec) , antiderivative size = 407, normalized size of antiderivative = 5.22 \[ \int \frac {x^7}{\left (a x+b x^3+c x^5\right )^2} \, dx=\left [-\frac {a b^{3} - 4 \, a^{2} b c + {\left (b^{4} - 6 \, a b^{2} c + 8 \, a^{2} c^{2}\right )} x^{2} + 2 \, {\left (a c^{2} x^{4} + a b c x^{2} + a^{2} c\right )} \sqrt {b^{2} - 4 \, a c} \log \left (\frac {2 \, c^{2} x^{4} + 2 \, b c x^{2} + b^{2} - 2 \, a c - {\left (2 \, c x^{2} + b\right )} \sqrt {b^{2} - 4 \, a c}}{c x^{4} + b x^{2} + a}\right )}{2 \, {\left (a b^{4} c - 8 \, a^{2} b^{2} c^{2} + 16 \, a^{3} c^{3} + {\left (b^{4} c^{2} - 8 \, a b^{2} c^{3} + 16 \, a^{2} c^{4}\right )} x^{4} + {\left (b^{5} c - 8 \, a b^{3} c^{2} + 16 \, a^{2} b c^{3}\right )} x^{2}\right )}}, -\frac {a b^{3} - 4 \, a^{2} b c + {\left (b^{4} - 6 \, a b^{2} c + 8 \, a^{2} c^{2}\right )} x^{2} - 4 \, {\left (a c^{2} x^{4} + a b c x^{2} + a^{2} c\right )} \sqrt {-b^{2} + 4 \, a c} \arctan \left (-\frac {{\left (2 \, c x^{2} + b\right )} \sqrt {-b^{2} + 4 \, a c}}{b^{2} - 4 \, a c}\right )}{2 \, {\left (a b^{4} c - 8 \, a^{2} b^{2} c^{2} + 16 \, a^{3} c^{3} + {\left (b^{4} c^{2} - 8 \, a b^{2} c^{3} + 16 \, a^{2} c^{4}\right )} x^{4} + {\left (b^{5} c - 8 \, a b^{3} c^{2} + 16 \, a^{2} b c^{3}\right )} x^{2}\right )}}\right ] \]

[In]

integrate(x^7/(c*x^5+b*x^3+a*x)^2,x, algorithm="fricas")

[Out]

[-1/2*(a*b^3 - 4*a^2*b*c + (b^4 - 6*a*b^2*c + 8*a^2*c^2)*x^2 + 2*(a*c^2*x^4 + a*b*c*x^2 + a^2*c)*sqrt(b^2 - 4*
a*c)*log((2*c^2*x^4 + 2*b*c*x^2 + b^2 - 2*a*c - (2*c*x^2 + b)*sqrt(b^2 - 4*a*c))/(c*x^4 + b*x^2 + a)))/(a*b^4*
c - 8*a^2*b^2*c^2 + 16*a^3*c^3 + (b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*x^4 + (b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^
3)*x^2), -1/2*(a*b^3 - 4*a^2*b*c + (b^4 - 6*a*b^2*c + 8*a^2*c^2)*x^2 - 4*(a*c^2*x^4 + a*b*c*x^2 + a^2*c)*sqrt(
-b^2 + 4*a*c)*arctan(-(2*c*x^2 + b)*sqrt(-b^2 + 4*a*c)/(b^2 - 4*a*c)))/(a*b^4*c - 8*a^2*b^2*c^2 + 16*a^3*c^3 +
 (b^4*c^2 - 8*a*b^2*c^3 + 16*a^2*c^4)*x^4 + (b^5*c - 8*a*b^3*c^2 + 16*a^2*b*c^3)*x^2)]

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 282 vs. \(2 (70) = 140\).

Time = 0.81 (sec) , antiderivative size = 282, normalized size of antiderivative = 3.62 \[ \int \frac {x^7}{\left (a x+b x^3+c x^5\right )^2} \, dx=- a \sqrt {- \frac {1}{\left (4 a c - b^{2}\right )^{3}}} \log {\left (x^{2} + \frac {- 16 a^{3} c^{2} \sqrt {- \frac {1}{\left (4 a c - b^{2}\right )^{3}}} + 8 a^{2} b^{2} c \sqrt {- \frac {1}{\left (4 a c - b^{2}\right )^{3}}} - a b^{4} \sqrt {- \frac {1}{\left (4 a c - b^{2}\right )^{3}}} + a b}{2 a c} \right )} + a \sqrt {- \frac {1}{\left (4 a c - b^{2}\right )^{3}}} \log {\left (x^{2} + \frac {16 a^{3} c^{2} \sqrt {- \frac {1}{\left (4 a c - b^{2}\right )^{3}}} - 8 a^{2} b^{2} c \sqrt {- \frac {1}{\left (4 a c - b^{2}\right )^{3}}} + a b^{4} \sqrt {- \frac {1}{\left (4 a c - b^{2}\right )^{3}}} + a b}{2 a c} \right )} + \frac {a b + x^{2} \left (- 2 a c + b^{2}\right )}{8 a^{2} c^{2} - 2 a b^{2} c + x^{4} \cdot \left (8 a c^{3} - 2 b^{2} c^{2}\right ) + x^{2} \cdot \left (8 a b c^{2} - 2 b^{3} c\right )} \]

[In]

integrate(x**7/(c*x**5+b*x**3+a*x)**2,x)

[Out]

-a*sqrt(-1/(4*a*c - b**2)**3)*log(x**2 + (-16*a**3*c**2*sqrt(-1/(4*a*c - b**2)**3) + 8*a**2*b**2*c*sqrt(-1/(4*
a*c - b**2)**3) - a*b**4*sqrt(-1/(4*a*c - b**2)**3) + a*b)/(2*a*c)) + a*sqrt(-1/(4*a*c - b**2)**3)*log(x**2 +
(16*a**3*c**2*sqrt(-1/(4*a*c - b**2)**3) - 8*a**2*b**2*c*sqrt(-1/(4*a*c - b**2)**3) + a*b**4*sqrt(-1/(4*a*c -
b**2)**3) + a*b)/(2*a*c)) + (a*b + x**2*(-2*a*c + b**2))/(8*a**2*c**2 - 2*a*b**2*c + x**4*(8*a*c**3 - 2*b**2*c
**2) + x**2*(8*a*b*c**2 - 2*b**3*c))

Maxima [F]

\[ \int \frac {x^7}{\left (a x+b x^3+c x^5\right )^2} \, dx=\int { \frac {x^{7}}{{\left (c x^{5} + b x^{3} + a x\right )}^{2}} \,d x } \]

[In]

integrate(x^7/(c*x^5+b*x^3+a*x)^2,x, algorithm="maxima")

[Out]

-2*a*integrate(x/(c*x^4 + b*x^2 + a), x)/(b^2 - 4*a*c) - 1/2*((b^2 - 2*a*c)*x^2 + a*b)/((b^2*c^2 - 4*a*c^3)*x^
4 + a*b^2*c - 4*a^2*c^2 + (b^3*c - 4*a*b*c^2)*x^2)

Giac [A] (verification not implemented)

none

Time = 0.69 (sec) , antiderivative size = 96, normalized size of antiderivative = 1.23 \[ \int \frac {x^7}{\left (a x+b x^3+c x^5\right )^2} \, dx=-\frac {2 \, a \arctan \left (\frac {2 \, c x^{2} + b}{\sqrt {-b^{2} + 4 \, a c}}\right )}{{\left (b^{2} - 4 \, a c\right )} \sqrt {-b^{2} + 4 \, a c}} - \frac {b^{2} x^{2} - 2 \, a c x^{2} + a b}{2 \, {\left (c x^{4} + b x^{2} + a\right )} {\left (b^{2} c - 4 \, a c^{2}\right )}} \]

[In]

integrate(x^7/(c*x^5+b*x^3+a*x)^2,x, algorithm="giac")

[Out]

-2*a*arctan((2*c*x^2 + b)/sqrt(-b^2 + 4*a*c))/((b^2 - 4*a*c)*sqrt(-b^2 + 4*a*c)) - 1/2*(b^2*x^2 - 2*a*c*x^2 +
a*b)/((c*x^4 + b*x^2 + a)*(b^2*c - 4*a*c^2))

Mupad [B] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 187, normalized size of antiderivative = 2.40 \[ \int \frac {x^7}{\left (a x+b x^3+c x^5\right )^2} \, dx=-\frac {\frac {x^2\,\left (2\,a\,c-b^2\right )}{2\,c\,\left (4\,a\,c-b^2\right )}-\frac {a\,b}{2\,c\,\left (4\,a\,c-b^2\right )}}{c\,x^4+b\,x^2+a}-\frac {2\,a\,\mathrm {atan}\left (\frac {b^3-4\,a\,b\,c}{{\left (4\,a\,c-b^2\right )}^{3/2}}-\frac {x^2\,\left (\frac {4\,a\,c^2}{{\left (4\,a\,c-b^2\right )}^{7/2}}+\frac {4\,a\,\left (b^3\,c^2-4\,a\,b\,c^3\right )\,\left (b^3-4\,a\,b\,c\right )}{{\left (4\,a\,c-b^2\right )}^{13/2}}\right )\,{\left (4\,a\,c-b^2\right )}^4}{8\,a^2\,c^2}\right )}{{\left (4\,a\,c-b^2\right )}^{3/2}} \]

[In]

int(x^7/(a*x + b*x^3 + c*x^5)^2,x)

[Out]

- ((x^2*(2*a*c - b^2))/(2*c*(4*a*c - b^2)) - (a*b)/(2*c*(4*a*c - b^2)))/(a + b*x^2 + c*x^4) - (2*a*atan((b^3 -
 4*a*b*c)/(4*a*c - b^2)^(3/2) - (x^2*((4*a*c^2)/(4*a*c - b^2)^(7/2) + (4*a*(b^3*c^2 - 4*a*b*c^3)*(b^3 - 4*a*b*
c))/(4*a*c - b^2)^(13/2))*(4*a*c - b^2)^4)/(8*a^2*c^2)))/(4*a*c - b^2)^(3/2)